Mathematics is one of many tools we’ll use in robotics.  Now when most of us are using a hammer we aren’t thinking to ourselves “I am using a hammer.  I am striking this nail with a hammer.  The hammer is hitting the nail…”  but when we’re taught mathematics we spend a lot of time focused on the tools of mathematics and that can be boring and frustrating.  With enough practice, however, we get comfortable using the hammer and are thinking about the outcome of our hammering, we’re using it in the context of some larger construction that we have in mind.  The same thing goes for math.  Math is only useful when we’re using it to build and discover.

I think everyone must have felt a chill when they first learned that the circumference of any circle, no matter how big, divided by its diameter always equaled 3.14159… Wow! How did that happen?  Is there any case that isn’t true?  Are there any other things in the universe that I can understand that rely on a constant like this?  Discoveries like this are still happening even today and we use those discoveries in our technologies and engineering.  In fact most modern technologies are completely dependent on those discoveries.

We won’t be using much math in this competition, but knowing how some basic tools can be used to make a better robot are as important as knowing how to use a screwdriver or a remote control console.  The basic tools are the ability to count, the ability to use arithmetic and the ability to find unknowns in an equation (algebra).  In order to master this tool I suggest we approach it like we would a new language.  First say it in english

“you can wrap 3.14 can lids around a can (assuming all three came from the same can)”,

then draw it as a picture,

pi

and then write it in the alphabetic symbols of that language

piequ

Want to know more:

http://www.geom.uiuc.edu/~banchoff/Flatland/

http://www.education.rec.ri.cmu.edu/downloads/education_standards/standards_menus/STEM%20lessons%20for%20Immersion%20Units.pdf

Advertisement